# **AIE110-ONX Series**

Edge Al Developer Kit

**User's Manual** 



# USER'S MANUAL



#### Disclaimers

This manual has been carefully checked and believed to contain accurate information. Axiomtek Co., Ltd. assumes no responsibility for any infringements of patents or any third party's rights, or any liability arising from such uses.

Axiomtek does not warrant or assume any legal liability or responsibility for the accuracy, completeness or usefulness of any information in this document. Axiomtek does not make any commitment to update any information in this manual.

Axiomtek reserves the right to change or revise this document and/or product at any time without notice.

No part of this document may be reproduced, stored in a retrieval system, or transmitted in any forms or by any means, electronic, mechanical, photocopying, recording, among others, without prior written permissions of Axiomtek Co., Ltd.

#### CAUTION

If you replace wrong batteries, it causes the danger of explosion. It is recommended by the manufacturer that you follow the manufacturer's instructions to only replace the same or equivalent type of battery, and dispose of used ones.

©Copyright 2023 Axiomtek Co., Ltd. All Rights Reserved September 2023, Version A1 Printed in Taiwan

# **ESD Precautions**

Computer boards have integrated circuits sensitive to static electricity. To prevent chipsets from electrostatic discharge damage, please take care of the following jobs with precautions:

- Do not remove boards or integrated circuits from their anti-static packaging until you are ready to install them.
- Before holding the board or integrated circuit, touch an unpainted portion of the system unit chassis for a few seconds. It discharges static electricity from your body.
- Wear a wrist-grounding strap, available from most electronic component stores, when handling boards and components.

#### **Trademarks Acknowledgments**

Axiomtek is a trademark of Axiomtek Co., Ltd. IBM, PC/AT, PS/2, VGA are trademarks of International Business Machines Corporation. Intel<sup>®</sup> and Pentium<sup>®</sup> are registered trademarks of Intel Corporation. NVIDIA<sup>®</sup> and Jetson are registered trademarks of NVIDIA Corporation. MS-DOS, Microsoft C and QuickBasic are trademarks of Microsoft Corporation. Windows 10, Linux and other brand names and trademarks are the properties and registered brands of their respective owners.

# **Table of Contents**

| Disclaimersii<br>ESD Precautionsiii |                                                        |           |  |  |  |
|-------------------------------------|--------------------------------------------------------|-----------|--|--|--|
|                                     |                                                        |           |  |  |  |
|                                     | Canaral Description                                    | יייי<br>ר |  |  |  |
| 1.1                                 | General Description                                    | Z         |  |  |  |
| 1.2                                 | Developer Kit Specifications                           | 3         |  |  |  |
| 1.2.1                               | Product Specification                                  | 3         |  |  |  |
| 1.2.2                               | I/O System                                             | 3         |  |  |  |
| 1.2.3                               | System Specification                                   | 4         |  |  |  |
| 1.3                                 | Dimensions                                             | 5         |  |  |  |
| 1.3.1                               | Developer Kit Dimensions                               | 5         |  |  |  |
| 1.3.2                               | Assembly Drawing                                       | 6         |  |  |  |
| 1.4                                 | Packing List                                           | 7         |  |  |  |
| 1.5                                 | Model List                                             | 7         |  |  |  |
| SECTION 2                           | 2 BOARD AND PIN ASSIGNMENTS                            | 9         |  |  |  |
| 2.1                                 | Board Dimensions and Fixing Holes                      | 9         |  |  |  |
| 2.2                                 | Board Layout                                           | . 10      |  |  |  |
| 2.3                                 | Connectors and Switches                                | . 12      |  |  |  |
| 2.3.1                               | Digital I/O Header (CN2)                               | 13        |  |  |  |
| 2.3.2                               | HDMI Connector (CN4)                                   | 13        |  |  |  |
| 2.3.3                               | USB2.0 & USB3.1 Gen2 Connector (CN5)                   | 14        |  |  |  |
| 2.3.4                               | DC Power Jack w/ Screw (CN6)                           | 14        |  |  |  |
| 2.3.5                               | 5V Fan Connector (CN7)                                 | 14        |  |  |  |
| 2.3.6                               | PCI-Express Mini Card Connector (SCN1)                 | 15        |  |  |  |
| 2.3.7                               | M.2 2280 Key M PCIe x4 SSD slot (SCN2)                 | 16        |  |  |  |
| 2.3.8                               | SIM Card Slot (SCN3)                                   | 17        |  |  |  |
| 2.3.9                               | Micro USB 2.0 Connector (SCN4)                         | 17        |  |  |  |
| 2.3.10                              | Ethernet Ports (LAN1, LAN2)                            | 18        |  |  |  |
| 2.3.11                              | Power Button & Reset Button (SW1)                      | 19        |  |  |  |
| 2.3.12                              | AT/ATX Switch (SSW1)                                   | 19        |  |  |  |
| 2.3.13                              | Recovery Mode Switch (SSW2)                            | 19        |  |  |  |
| 2.3.14                              | Debug Port Header (JP1)                                | 20        |  |  |  |
| 2.3.15                              | Reserved Connector: Power Button & Recovery mode (JP2) | 20        |  |  |  |
| 2.3.16                              | I <sup>2</sup> C Connector (JP3)                       | 20        |  |  |  |
| 2.3.17                              | CMOS Battery Interface (BAT1)                          | 21        |  |  |  |
| 2.3.18                              | Power and Storage LED Indicator (LED1)                 | 21        |  |  |  |
| 2.4                                 | Cables                                                 | . 22      |  |  |  |
| 2.4.1                               | Digital I/O Cable                                      | 22        |  |  |  |
| SECTION 3                           | 3 JETPACK BSP FLASH METHOD                             | .23       |  |  |  |
| 3.1                                 | JETPACK FLASH METHOD                                   | . 23      |  |  |  |
| 3.2                                 | Image Information Inquiry Command                      | . 26      |  |  |  |
| 3.3                                 | JTOP-Third-party Jetson Platform Monitor Tool          | . 27      |  |  |  |
| APPENDIX                            | A WATCHDOG TIMER                                       | .29       |  |  |  |
| A.1                                 | Sample Program                                         | . 29      |  |  |  |
| A.2                                 | wdt.c                                                  | . 30      |  |  |  |
| A.3                                 | watchdog.h                                             | . 31      |  |  |  |
|                                     |                                                        |           |  |  |  |
| APPENDIX                            | B PROGRAMMABLE DIGITAL I/O                             | .33       |  |  |  |
| B.1                                 | Default Setting & Command Format                       | . 33      |  |  |  |

| B.2 | Sample Program | 34 |
|-----|----------------|----|
| B.3 | Register Table | 34 |

This page is intentionally left blank.

# SECTION 1 INTRODUCTION



This chapter contains general information and detailed specifications of the AIE110-ONX. The Chapter 1 includes the following sections:

- General Description
- Developer kit Specifications
- Dimensions
- I/O Outlets
- Packing List
- Model List

# **1.1 General Description**

The AIE110-ONX is a palm-sized developer kit with NVIDIA® Jetson Orin<sup>™</sup> NX Series supercomputer-on-a-module that delivers outstanding AI performance, excellent I/O flexibility, varied peripherals, and accommodation for board support packages (BSP).

It enables users to easily convert the developer kit to an edge system using Axiomtek industrial design services.

This developer kit is equipped with one 8 GB or 16GB 128-bit LPDDR5 102.4GB/s, and a built-in watchdog timer. It also features one GbE, one GbE PoE, one USB 3.2 Gen2, one USB 2.0, one HDMI2.1, and one mini PCI-Express slot with USB and PCIe signal. Additionally, it offers users one M.2 Key M NVMe slot that provides high-performance storage for makers to process the massive data and the edge AI application development.

There are more interfaces available, such as 8CH DIO, debug port, recovery switch, Micro USB for image flash, and more.

#### • Features

- 1. NVIDIA<sup>®</sup> Jetson Orin<sup>™</sup> NX (Up to 100 TOPS)
- 2. 2 USB, 1 8CH DIO, 1 GbE and 1 GbE PoE (15W)
- 3. 1 M.2 Key M NVMe SSD slot for massive data processing
- 4. 1 Mini PCI-Express slot & SIM slot for Wi-Fi / Bluetooth / LTE / GPS
- 5. 12VDC Power input (DC Jack Screw Type)

#### • JetPack Supported

The AIE110-ONX supports JetPack 5.1.1 or later. NVIDIA JetPack SDK is the most comprehensive solution for building AI applications.

JetPack supports Jetson AGX Orin<sup>™</sup>, Jetson Orin<sup>™</sup> NX, Jetson Orin<sup>™</sup> Nano, Jetson AGX Xavier<sup>™</sup>, Jetson Xavier<sup>™</sup> NX, Jetson<sup>™</sup> TX2 NX, Jetson<sup>™</sup> Nano and Jetson TX2 series. It bundles all the Jetson platform software, including TensorRT, cuDNN, CUDA Toolkit, VisionWorks, GStreamer, and OpenCV, all built on top of L4T with LTS Linux kernel.

#### OS Supported

The AIE110-ONX supports Linux Ubuntu 20.04 or later.

#### • High-performance NVMe SSD Storage Supported

For storage device, the AIE110-ONX supports one M.2 2280 Key M with PCI-Express 2.0 x4 interface.

# 1.2 Developer Kit Specifications

#### **1.2.1 Product Specification**

- NVIDIA Jetson SKU
  - NVIDIA<sup>®</sup> Jetson Orin<sup>TM</sup> NX Series 8GB (70 TOPS)
  - NVIDIA<sup>®</sup> Jetson Orin<sup>TM</sup> NX Series 16GB (100 TOPS)
- CPU
  - 8GB: 6-core NVIDIA Arm® Cortex A78AE v8.2 64-bit CPU 1.5MB L2 + 4MB L3
  - 16GB: 8-core NVIDIA Arm® Cortex A78AE v8.2 64-bit CPU 2MB L2 + 4MB L3
- GPU
  - 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores
- Storage
  - One M.2 2280 M Key with PCI-Express 2.0 x4 NVMe SSD slot

\*Orin NX no longer has built-in eMMC and only supports SSD for the bootable device.

- System Memory
  - BGB: 8GB 128-bit LPDDR5 102.4GB/s
  - 16GB: 16GB 128-bit LPDDR5 102.4GB/s
- WLAN & WWAN
  - One PCI Express Mini Card modules slot to support Wi-Fi or 3G/4G/LTE modules

#### 1.2.2 I/O System

- One HDMI 2.1 for display (Resolution: up to 7680x4320 @30Hz)
- One RJ-45 connector for 10/100/1000 Base-T Ethernet port
- One RJ-45 connector for 10/100/1000 Base-T PoE (IEEE 802.3af; PSE), max. up to 15.4 Watts



<u>Note</u>: AIE110 is a power supply device. Two PSE devices should not be connected together, which may cause the risk of power conflict. Correctly connect PD Device or switch without PoE. If you need PoE switch, please find the switch with uplink port.

- One USB 2.0 and one USB 3.2 Gen2 connectors
- Front-access design for ease of updating NVIDIA Jetpack
  - One Micro USB connector for image flash only
  - One Recovery switch
- One M.2 2280 Key M with PCI-Express2.0 x4 SSD slot for massive data processing \*Orin NX no longer has built-in eMMC and only supports SSD for the bootable device.
- One full-size PCI Express Mini Card slot (USB + PCI Express signal)
- One Power button and one Reset button

- Two LED Indicators (System Power, M.2 Storage)
- One 12 VDC Power Jack connector

#### 1.2.3 System Specification

- Watchdog Timer
  - Built-in NVIDIA<sup>®</sup> Jetson Orin<sup>TM</sup> NX Series
- Power Supply
  - Input : 12 VDC
- Thermal Solution
  - Active heatsink
- Operation Temperature
  - -10°C ~ +60°C (-14°F ~ +140°F)
- Humidity
  - 10% ~ 95% (non-condensing)
- Weight
  - 0.3 kg (0.66 lb) without package
  - 0.9 kg (1.98 lb) with package
- Dimensions
  - 165 mm (6.49") (W) x 117 mm (4.60") (D) x 37.7 mm (1.48") (H)

**Note:** All specifications and images are subject to change without notice.

# 1.3 Dimensions

The following diagrams show the dimensions and outlines of the AIE110-ONX.

# 1.3.1 Developer Kit Dimensions







6

 $\sim$ 

0

۵

0



# 1.3.2 Assembly Drawing



# 1.4 Packing List

The package bundled with your AIE110-ONX should contain the following items:

- AIE110-ONX Developer Kit Unit x 1
- Digital I/O Cable x 1
- (Optional) Power Adapter
- (Optional) Power Cord
- (Optional) M.2 Key M NVMe SSD
- (Optional) Wi-Fi or LTE module kit

%Regarding the latest product manual, please download them from Axiomtek official website.

#### 1.5 Model List

| AIE110-ONX-8GB  | Edge AI Developer Kit with NVIDIA® Jetson Orin™ NX 8GB, 1<br>HDMI, 1 GbE LAN, 1 GbE PoE and 2 USB  |
|-----------------|----------------------------------------------------------------------------------------------------|
| AIE110-ONX-16GB | Edge AI Developer Kit with NVIDIA® Jetson Orin™ NX 16GB, 1<br>HDMI, 1 GbE LAN, 1 GbE PoE and 2 USB |

If you cannot find this package or any items are missing, please contact Axiomtek distributors immediately.

This page is intentionally left blank.

# SECTION 2 BOARD AND PIN ASSIGNMENTS

Proper jumper settings configure the **AIE110-ONX** to meet your application purpose. We are here with listing a summary table of all jumpers and default settings for onboard devices, respectively.

# 2.1 Board Dimensions and Fixing Holes

**Top View** 



**Bottom View** 



# 2.2 Board Layout



Top View

**Bottom View** 





� <u>Note</u>: We strongly recommended that you should not modify any unmentioned jumper setting without Axiomtek FAE's instruction. Any modification without instruction might cause damage to the system.

### 2.3 Connectors and Switches

Connectors connect the board with other parts of the system. Loose or improper connection might cause problems. Make sure all connectors are properly and firmly connected. Here is a summary table shows you all connectors and button on the **AIE110-ONX** Series.

| External Connectors / Buttons                       | PCB Location | Section |  |  |
|-----------------------------------------------------|--------------|---------|--|--|
| Digital I/O Connector                               | CN2          | 2.3.1   |  |  |
| HDMI Connector                                      | CN4          | 2.3.2   |  |  |
| USB2.0 & USB3.1 Gen2 Connector                      | CN5          | 2.3.3   |  |  |
| DC-in Connector                                     | CN6          | 2.3.4   |  |  |
| 5V Fan Connector                                    | CN7          | 2.3.5   |  |  |
| PCI-Express Mini Card slot                          | SCN1         | 2.3.6   |  |  |
| M.2 2280 Key M PCIe x4 SSD slot                     | SCN2         | 2.3.7   |  |  |
| SIM Card Slot                                       | SCN3         | 2.3.8   |  |  |
| Micro USB 2.0 Connector                             |              | 230     |  |  |
| (For Jetpack flash)                                 | SCN4         | 2.3.9   |  |  |
| Ethernet Ports                                      | LAN1         | 2.3.10  |  |  |
| PoE Ports                                           | LAN2         | 2.3.11  |  |  |
| Power Button & Reset Button                         | SW1          | 2.3.11  |  |  |
| AT/ATX Switch                                       | SSW1         | 2.3.12  |  |  |
| Recovery Mode Switch<br>(For Jetpack flash)         | SSW2         | 2.3.13  |  |  |
| Debug Port Connector                                | JP1          | 2.3.14  |  |  |
| Reserved Connector:<br>Power Button & Recovery mode | JP2          | 2.3.15  |  |  |
| I <sup>2</sup> C Connector                          | JP3          | 2.3.16  |  |  |
| CMOS Battery Interface                              | BAT1         | 2.3.17  |  |  |
| Power and Storage LED Indicator                     | LED1         | 2.3.18  |  |  |

#### 2.3.1 Digital I/O Header (CN2)

The CN12 is a 2 x 5-pin header for 8-Channel digital I/O interface.

The digital I/O is controlled via software programming.

| Pin | Signal  | Pin | Signal |
|-----|---------|-----|--------|
| 1   | DIO1    | 2   | DIO2   |
| 3   | DIO3    | 4   | DIO4   |
| 5   | DIO5    | 6   | DIO6   |
| 7   | DIO7    | 8   | DIO8   |
| 9   | +5V_SBY | 10  | GND    |



#### 2.3.2 HDMI Connector (CN4)

The HDMI (High-Definition Multimedia Interface) is a compact digital interface which is capable of transmitting high-definition video and high-resolution audio over a single cable.

| Pin | Signal       | Pin | Signal       |
|-----|--------------|-----|--------------|
| 1   | HDMI1_DATA2+ | 2   | GND          |
| 3   | HDMI1_DATA2- | 4   | HDMI1_DATA1+ |
| 5   | GND          | 6   | HDMI1_DATA1- |
| 7   | HDMI1_DATA0+ | 8   | GND          |
| 9   | HDMI1_DATA0- | 10  | HDMI1_CLK+   |
| 11  | GND          | 12  | HDMI1_CLK-   |
| 13  | HDMI_CEC     | 14  | NC           |
| 15  | HDMI1_SCL    | 16  | HDMI1_SDA    |
| 17  | GND          | 18  | +5V          |
| 19  | HDMI_HTPLG   |     |              |



#### 2.3.3 USB2.0 & USB3.1 Gen2 Connector (CN5)

The Universal Serial Bus connectors are compliant with USB 2.0 (480Mbps) and USB 3.1 Gen2 (10Gbps), and ideally for installing USB peripherals such as keyboard, mouse, scanner, etc.

| Pin | Signal      | Pin | Signal      |  |  |  |
|-----|-------------|-----|-------------|--|--|--|
| 1   | 5V_USB1     | 7   | GND         |  |  |  |
| 2   | USB1_D-     | 8   | USB_SS1_TX- |  |  |  |
| 3   | USB1_D+     | 9   | USB_SS1_TX+ |  |  |  |
| 4   | GND         | 10  | 5V_USB2     |  |  |  |
| 5   | USB_SS1_RX- | 11  | USB2_D-     |  |  |  |
| 6   | USB_SS1_RX+ | 12  | USB2_D+     |  |  |  |
| 13  | GND         |     |             |  |  |  |



#### 2.3.4 DC Power Jack w/ Screw (CN6)

The CN6 is a DC jack with screw. Firmly insert at least 60W adapter into this connector. Loose connection may cause system instability and make sure all components/devices are properly installed before connecting.

| Pin | Signal |
|-----|--------|
| 1   | 12V    |
| 2   | GND    |



### 2.3.5 5V Fan Connector (CN7)

This is a 4-pin connector for smart fan interface.

| Pin | Signal   |
|-----|----------|
| 1   | GND      |
| 2   | +5V      |
| 3   | ТАСН     |
| 4   | PWM (5V) |



### 2.3.6 PCI-Express Mini Card Connector (SCN1)

The AIE110-ONX supports a full-size PCI-Express Mini Card slots. SCN1 is applying to either PCI-Express or USB 2.0 signal, and complies with PCI-Express Mini Card Spec. V1.2.



| Pin | Signal   | Pin | Signal                 | Pin | Signal   | Pin | Signal                               |
|-----|----------|-----|------------------------|-----|----------|-----|--------------------------------------|
| 1   | WAKE#    | 2   | +3.3V                  | 3   | NC       | 4   | GND                                  |
| 5   | NC       | 6   | +1.5V                  | 7   | CLKREQ#  | 8   | UIM_PWR                              |
| 9   | GND      | 10  | UIM_DATA               | 11  | REFCLK-  | 12  | UIM_CLK                              |
| 13  | REFCLK+  | 14  | UIM_RESET              | 15  | GND      | 16  | UIM_VPP                              |
| 17  | NC       | 18  | GND                    | 19  | NC       | 20  | WLAN_DISABLE#<br>/ Orin™ NX's GPIO05 |
| 21  | GND      | 22  | NC                     | 23  | PEX2_RX- | 24  | +3.3V                                |
| 25  | PEX2_RX+ | 26  | GND                    | 27  | GND      | 28  | +1.5V                                |
| 29  | GND      | 30  | Orin™ NX's<br>I2C2_SCL | 31  | PEX2_TX- | 32  | Orin™ NX's<br>I2C2_SDA               |
| 33  | PEX2_TX+ | 34  | GND                    | 35  | GND      | 36  | USB2.0_D-                            |
| 37  | GND      | 38  | USB2.0_D+              | 39  | +3.3V    | 40  | GND                                  |
| 41  | +3.3V    | 42  | LED_WWAN#              | 43  | GND      | 44  | NC                                   |
| 45  | NC       | 46  | NC                     | 47  | NC       | 48  | +1.5V                                |
| 49  | NC       | 50  | GND                    | 51  | NC       | 52  | +3.3V                                |

### 2.3.7 M.2 2280 Key M PCIe x4 SSD slot (SCN2)

The AIE110-ONX comes with one M.2 2280 Key M PCIe x4 NVMe SSD slot for storage.



| Pin | Signal             | Pin | Signal             | Pin | Signal       | Pin | Signal    |  |
|-----|--------------------|-----|--------------------|-----|--------------|-----|-----------|--|
| 1   | GND                | 2   | +3.3V              | 3   | GND          | 4   | +3.3V     |  |
| 5   | PEX3_RX-           | 6   | NC                 | 7   | PEX3_RX+     | 8   | NC        |  |
| 9   | GND                | 10  | LED_1#             | 11  | PEX3_TX-     | 12  | +3.3V     |  |
| 13  | PEX3_TX+           | 14  | +3.3V              | 15  | GND          | 16  | +3.3V     |  |
| 17  | PEX2_RX-           | 18  | +3.3V              | 19  | PEX2_RX+     | 20  | NC        |  |
| 21  | GND                | 22  | NC                 | 23  | PEX2_TX-     | 24  | NC        |  |
| 25  | PEX2_TX+           | 26  | NC                 | 27  | GND          | 28  | NC        |  |
| 29  | PEX1_RX-           | 30  | NC                 | 31  | PEX1_RX+     | 32  | NC        |  |
| 33  | GND                | 34  | NC                 | 35  | PEX1_TX-     | 36  | NC        |  |
| 37  | PEX1_TX+           | 38  | M.2_DEVSLP         | 39  | GND          | 40  | NC        |  |
| 41  | PEX0_RX-           | 42  | NC                 | 43  | PEX0_RX+     | 44  | NC        |  |
| 45  | GND                | 46  | NC                 | 47  | PEX0_TX-     | 48  | NC        |  |
| 49  | PEX0_TX+           | 50  | PERST#             | 51  | GND          | 52  | CLKREQ#   |  |
| 53  | PEX0_REFCLKn       | 54  | PEWAKE#            | 55  | PEX0_REFCLKp | 56  | NC        |  |
| 57  |                    | 58  |                    | 59  | CONNECTOR    | 60  | CONNECTOR |  |
| 0.  | GND                |     | NC                 | 00  | Key M        | 00  | Key M     |  |
| 61  | CONNECTOR          | 62  | CONNECTOR          | 63  | CONNECTOR    | 64  | CONNECTOR |  |
|     | Key M              |     | Key M              |     | Key M        |     | Кеу М     |  |
| 65  | CONNECTOR Key<br>M | 66  | CONNECTOR<br>Key M | 67  | NC           | 68  | NC        |  |
| 69  | NC                 | 70  | +3.3V              | 71  | GND          | 72  | +3.3V     |  |
| 73  | GND                | 74  | +3.3V              | 75  | GND          |     |           |  |

#### 2.3.8 SIM Card Slot (SCN3)

AIE110-ONX comes with SIM Card Slot (SCN3) for inserting SIM Card. In order to work properly, the SIM Card must be used together with 3G/LTE module which would be inserted to PCI-Express Mini Card Connector (SCN1). It is mainly used for 3G/LTE wireless network application.

| Pin | Signal  | Pin | Signal   |
|-----|---------|-----|----------|
| 1   | UIM PWR | 5   | GND      |
| 2   | UIM RST | 6   | UIM VPP  |
| 3   | UIM CLK | 7   | UIM DATA |
| 4   | NC      | 8   | NC       |



#### 2.3.9 Micro USB 2.0 Connector (SCN4)

The SCN4 is specifically designed for image flashing only. To flash Jetpack, please switch SSW2 to ON before booting up the system, which would force the system to recovery mode.

| Pin | Signal  |
|-----|---------|
| 1   | +5V     |
| 2   | USB0 DN |
| 3   | USB0 DP |
| 4   | GND     |
| 5   | GND     |



#### 2.3.10 Ethernet Ports (LAN1, LAN2)

The AIE110-ONX comes with two RJ-45 connectors: LAN1 (NVIDIA<sup>®</sup> Jetson Orin<sup>TM</sup> NX) and LAN2 (Intel<sup>®</sup> I210-IT). LAN1 is a GbE port, but LAN2 is the GbE PoE port (non-isolated), which is compliant IEEE 802.3af class 3, and the total power budget is 15Watts maximum.

|     | LAN1                                  |     | LAN2 (PoE)                          |
|-----|---------------------------------------|-----|-------------------------------------|
| Pin | Signal                                | Pin | Signal                              |
| 1   | Tx+(Data<br>transmission<br>positive) | 1   | Tx+ (Data transmission<br>positive) |
| 2   | Tx-(Data<br>transmission<br>negative) | 2   | Tx- (Data transmission<br>negative) |
| 3   | Rx+(Data reception positive)          | 3   | Rx+(Data reception<br>positive)     |
| 4   | RJ-1(For 1000 base<br>T-Only)         | 4   | RJ-1(For 1000 base T-<br>Only)      |
| 5   | RJ-1(For 1000 base<br>T-Only)         | 5   | RJ-1(For 1000 base T-<br>Only)      |
| 6   | Rx- (Data reception<br>negative)      | 6   | Rx- (Data reception negative)       |
| 7   | RJ-1(For 1000 base<br>T-Only)         | 7   | RJ-1(For 1000 base T-<br>Only)      |
| 8   | RJ-1(For 1000 base<br>T-Only)         | 8   | RJ-1(For 1000 base T-<br>Only)      |
| А   | Active LED                            | А   | Active LED                          |
| В   | Speed LED (1000M)                     | В   | Speed LED (1000M /<br>100M)         |



#### 2.3.11 Power Button & Reset Button (SW1)

Power button can allow users to either turn on the AIE110-ONX or forcibly shut down the system, and the reset button can allow users to reset AIE110-ONX during system abnormal situation.

| Pin | Signal  |
|-----|---------|
| 1   | GND     |
| 2   | GND     |
| 3   | RST_BTN |
| 4   | PWR_BTN |
| 5   | GND     |
| 6   | GND     |



4 3 日日 ON

#### 2.3.12 AT/ATX Switch (SSW1)

If you turn OFF the Pin1 (AT mode) of SSW1, the system will be automatically power on without pressing soft power button during power input; we can use this switch to achieve auto power on demand.

| Pin | Description   | ON (Default) | OFF |
|-----|---------------|--------------|-----|
| 1   | AT / ATX Mode | ATX          | AT  |
| 2   | NC            | NC           | NC  |

#### 2.3.13 Recovery Mode Switch (SSW2)

It will make NVIDIA® Jetson  $\mathsf{Orin}^{{}_{\mathbb{T}^{M}}}$  NX force recovery mode when switching SSW2 to ON before booting up the system.

| Pin | Signal        |        |
|-----|---------------|--------|
| ON  | Recovery Mode | ON OFF |
| OFF | Normal        |        |

#### 2.3.14 Debug Port Header (JP1)

The JP1 is the serial debug port (UART Port0) for debugging purposes at software development.

| Pin | Signal         |
|-----|----------------|
| 1   | +5V            |
| 2   | UART2_TXD_3.3V |
| 3   | GND            |
| 4   | UART2_RXD_3.3V |



#### 2.3.15 Reserved Connector: Power Button & Recovery mode (JP2)

JP2 is a reserved connector for entering recovery mode (1-2) and power button (3-4). It supports the same function as SSW2 and SSW1(Power button only).

| Pin | Signal     |  |
|-----|------------|--|
| 1   | Recovery_N |  |
| 2   | GND        |  |
| 3   | PWR_BTN    |  |
| 4   | GND        |  |



#### 2.3.16 I<sup>2</sup>C Connector (JP3)

JP3 is connect to I<sup>2</sup>C port 0 of the NVIDIA<sup>®</sup> Jetson Orin<sup>™</sup> NX, and it has pull up 2.2k ohm to 3.3V on carrier board.

| Pin | Signal                       |
|-----|------------------------------|
| 1   | I <sup>2</sup> C0_SDA (3.3V) |
| 2   | I <sup>2</sup> C0_SCL (3.3V) |
| 4   | GND                          |



#### 2.3.17 CMOS Battery Interface (BAT1)

This connector is for CMOS battery interface.

| Pin | Signal |  |
|-----|--------|--|
| 1   | +VBAT  |  |
| 2   | GND    |  |

### 2.3.18 Power and Storage LED Indicator (LED1)

The Yellow LED is linked to Solid-state Drive (SSD) activity signal. LED flashes every time SSD is accessed. The power LED (Green) lights up and will remain steady while the system is powered on.

ПΟ

| LED Color | Description                |
|-----------|----------------------------|
| Yellow    | Solid-state drive activity |
| Green     | Power on/off               |

### 2.4 Cables

#### 2.4.1 Digital I/O Cable

This cable is for 8-Channel digital I/O programming, please connect the digital I/O cable to Digital I/O Header (CN2).

| Pin | Signal | Pin | Signal |
|-----|--------|-----|--------|
| 1   | DIO1   | 6   | DIO6   |
| 2   | DIO3   | 7   | DIO4   |
| 3   | DIO5   | 8   | DIO2   |
| 4   | DIO7   | 9   | GND    |
| 5   | DIO8   |     |        |





# SECTION 3 JETPACK BSP FLASH METHOD

This chapter provides users with a detailed description of how to flash NVIDIA Jetpack BSP for AIE110-ONX, the user could follow the below instruction to install or reinstall Jetpack BSP by themselves.

# 3.1 JETPACK FLASH METHOD

Please use the following instructions to flash the JetPack to the AIE110-ONX.



Please contact our sales or FAE for the latest Jetpack SDK, and prepare a Linux host system running x86\_64 Ubuntu v18.04 or later.

# Note: If the Linux host system is running x86\_64 Ubuntu v18.04, please follow the instructions below to install Python first.

Step 1. Connect the Linux host system to internet



- Step1. AIE110-ONX connection as follows:
  - ➡ Connect a USB cable from the Linux host system to the Micro USB port at AIE110-ONX, and switch the recovery switch to ON. For more details, please refer to <u>2.2.13 Recovery Mode Switch (SSW2)</u>.
  - ⇒ Connect an HDMI monitor to AIE110-ONX.
- Step2. Open the terminal at the host system, and change the path to the image file directory,e.g., "~/Downloads", and check image tarball data integrity with the following commands:



5 md5sum -c <image tarball file name>.tbz2.md5sum

Command Example:

\$ md5sum -c mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0.tbz2.md5sum

AIE110-ONX Series User's Manual

axio@axio-desktop:~/Downloads\$ md5sum -c mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0.tbz2.md5sum mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0.tbz2: 0K axio@axio-desktop:~/Downloads\$

Step3. If the check result returns OK, untar the image file with the command below:

#### \$ tar jxvf <image\_tarball\_file\_name>.tbz2

# Command Example:

\$ tar jxvf mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0.tbz2

axio@axio-desktop:~/Downloads\$ tar jxvf mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0.tbz2

Step4. Change the directory to the image package folder with the command below:

#### \$ cd <image\_file\_name>

Command Example:

\$ cd mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0

axio@axio-desktop:~/Downloads\$ cd mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0
axio@axio-desktop:~/Downloads/mfi\_jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0\$

Step5. Make sure the recovery switch(SSW2) has been switched to ON, and run the command lsusb, then the command line "0955:7323 Nvidia Corp." should be listed.

#### \$ lsusb

| axio | axio@axio-desktop:~/Downloads\$ lsusb |          |        |      |                                                        |
|------|---------------------------------------|----------|--------|------|--------------------------------------------------------|
| Bus  | 002                                   | Device   | 001:   | ID   | 1d6b:0003 Linux Foundation 3.0 root hub                |
| Bus  | 001                                   | Device   | 004:   | ID   | 1c4f:0002 SiGma Micro Keyboard TRACER Gamma Ivory      |
| Bus  | 001                                   | Device   | 003:   | ID   | 067b:2303 Prolific Technology, Inc. PL2303 Serial Port |
| Bus  | 001                                   | Device   | 002:   | ID   | 067b:2303 Prolific Technology, Inc. PL2303 Serial Port |
| Bus  | 001                                   | Device   | 052:   | ID   | 0955:7323 NVidia Corp.                                 |
| Bus  | 001                                   | Device   | 006:   | ID   | 05e3:0608 Genesys Logic, Inc. Hub                      |
| Bus  | 001                                   | Device   | 005:   | ID   | 045e:00cb Microsoft Corp. Basic Optical Mouse v2.0     |
| Bus  | 001                                   | Device   | 001:   | ID   | 1d6b:0002 Linux Foundation 2.0 root hub                |
| axio | o@ax                                  | io-desk1 | top:~, | /Dov | /nloads\$                                              |

Step6. Running the following command to flash the image.



The flashing procedure takes approximately 20 minutes or more. Once Step7. finished, and AIE110-ONX will automatically reboot, and please remove the Micro USB cable and switch the recovery switch(SSW2) to OFF to return to standard mode.

#### [SUCCESS]:

```
Ongoing processes: 3165
Ongoing processes: 3165
Ongoing processes: 3165
Ongoing processes:
axio@axio-desktop:~/Downloads/mfi jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0$
```

#### [FAIL]:

If the flashing procedure fails, you will see a message "Flash complete (WITH FAILURES)" as shown below. In this case, the AIE110-ONX will not automatically reboot. Please press the reset button and repeat the flashing procedure.

Ongoing processes: 16446 Ongoing processes: 16446 Ongoing processes: Flash complete (WITH FAILURES) axio@axio-desktop:~/Test/mfi jetson-orin-nx-JP5.1.1-SBC87903-V1.0.0\$

#### THE DEFAULT LOGIN CREDENTIALS:

Username: nvidia Password: nvidia

#### **%CAUTION:**



Running \$ sudo apt upgrade command for NVIDIA JetPack OTA may overwrite the BSP of the AIE series platform, which can cause unexpected results including losing I/O ports. For regular JetPack updates or reflashing, please contact our sales or FAE to get the latest AIE Series JetPack image.

## 3.2 Image Information Inquiry Command

Running axiomtek.sh command to inquiry the current image information, image version, L4T version, Linux kernel version, and Ubuntu version.

nvidia@nvidia-desktop:~\$ axiomtek.sh BUILD\_MODEL=SBC87903-A20 + Jetson-ORIN\_NX BUILD\_VERSION=JetPack-5.1\_Linux BSP\_BUILD\_VERSION=V1.0.0 BSP\_BUILD\_COMMIT\_ID=master\_76fafb8c8 BUILD\_DATE=2023/02/23 11:28:47 BUILD\_ID=axio L4T\_VERSION=R35-2.1 LINUX\_KERNEL\_VERSION=5.10.104 UBUNTU\_VERSION=Ubuntu 20.04.5 LTS nvidia@nvidia-desktop:~\$

# 3.3 JTOP-Third-party Jetson Platform Monitor Tool

JTOP is a third-party system monitoring utility that runs on the terminal and see and control realtime the status of the AIE Series Platform. CPU, RAM, GPU status, power mode management, toolkits version and more.

#### Installation Guide:

Please connect to the internet and enter the following commands in the terminal to install JTOP.

Once installation is completed, reboot the device and then type the below command in the terminal to launch JTOP:

#### \$ sudo jtop

**Note:** JTOP may require approximately 200 to 300 MB of storage space.

| ΓŦ                                                                                                                                                       |                                                       |                              |                           |                            | j                                                                       | top MAX                                                       | N CPU 3.7                                                                                        | 7% GPU 15.6%                                                                                          | Q                                                                  | ≡ –                                          | • 😣                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|---------------------------|----------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|-----------------------|
| Model:<br>1 [ <br>2 [<br>Mem [ <br>Swp [<br>Emc [2                                                                                                       | NVIDIA O<br>13.1%]<br>0.0%]<br>!!!!!!                 | <b>rin N</b><br>729M<br>729M | IX Deve<br>IHz 3<br>IHz 4 | eloper<br>[<br>[<br>3.2G   | <b>Kit</b><br>3.0<br>4.0<br>Hz]                                         | <pre>- Jetp %] 729M %] 729M %] 729M 1.5G/14 0k/7 2.1GHz</pre> | Pack 5.1<br><i>Hz</i> 5 [<br><i>Hz</i> 6 [<br>16] FAN<br>16] Je<br>0% NV<br>Up                   | [L4T 35.2.1]<br>1.0%] 7.<br>2.0%] 7.<br>N [          <br>tson Clocks:<br>Power[0]: Mu<br>time: 0 days | ]<br>29MHz 7 [<br>29MHz 8 [<br>11111111111111111111111111111111111 | 5.1%] <i>72</i><br>2.0%] <i>72</i><br>72.2%] | 9MHz<br>19MHz<br>ORPM |
| GPU [                                                                                                                                                    |                                                       | 44-44                        |                           |                            |                                                                         |                                                               |                                                                                                  |                                                                                                       |                                                                    | 15.6%]                                       | 306MHz                |
| DSK [#<br>PTD                                                                                                                                            | USER                                                  | GPU                          | TYPE                      | PRT                        | s                                                                       | CPU%                                                          | MEM                                                                                              | [GPU MEM]                                                                                             | Command                                                            | 17.                                          | 00/1080               |
| 2607<br>2454<br>1494<br>2086<br>939                                                                                                                      | nvidia<br>nvidia<br>root<br>root<br>root              | I<br>I<br>I<br>I             | 0<br>0<br>0<br>0          | 20<br>20<br>20<br>20<br>20 | s<br>s<br>s<br>s                                                        | 5.7<br>1.1<br>0.2<br>1.0<br>0.0                               | 66.7M<br>11.3M<br>10.2M<br>38.8M<br>5.1M                                                         | 84.1M<br>48.2M<br>43.4M<br>22.2M<br>76k                                                               | gnome-shell<br>Xorg<br>Xorg<br>gnome-shell<br>nvargus-daemo        | n                                            |                       |
| [HW engines]<br>APE: [OFF] PVA0a: [OFF]<br>DLA0c: [OFF] DLA1c: [OFF]<br>NVENC: [OFF] NVDEC: [OFF]<br>NVJPG: [OFF] NVJPG1: [OFF]<br>SE: 473MHz VIC: [OFF] |                                                       |                              |                           |                            | [Senso<br>CPU<br>CV0<br>CV1<br>CV2<br>GPU<br>SOC0<br>SOC1<br>SOC2<br>tj | r] ——                                                         | [Temp]<br>71.09C<br>70.38C<br>69.75C<br>69.75C<br>69.00C<br>70.56C<br>71.81C<br>70.75C<br>71.88C | [Power] —<br>CPU GPU CV<br>SOC<br>VDD_IN                                                              | [Inst]<br>984mW<br>1.5W<br>5.3W                                    | [Avg]<br>940mW<br>1.5W<br>5.2W               |                       |
| 1ALL                                                                                                                                                     | ALL 2GPU 3CPU 4MEM 5ENG 6CTRL 7INFO Quit (c) 2023, RB |                              |                           |                            |                                                                         |                                                               |                                                                                                  |                                                                                                       |                                                                    |                                              |                       |

This page is intentionally left blank.

# APPENDIX A WATCHDOG TIMER

#### About Watchdog Timer

Software stability is major issue in most applications. Some embedded systems are not watched by human for 24 hours. It is usually too slow to wait for someone to reboot when computer hangs. The systems need to be able to reset automatically when things go wrong. The watchdog timer gives us solutions in this regard.

The watchdog timer is a counter that triggers a system to reset when it counts down to zero from a preset value. The software starts the counter with an initial value and must reset it periodically. If the counter ever reaches zero, it means the software has crashed, the system will reboot.

## A.1 Sample Program

- 1. Put "wdt.c" and "watchdog.h" two files into target AIE device.
- 2. Compile by below command line:

# gcc wdt.c -o wdt

3. Test: (default: 60 seconds, if there is no timeout value as input parameter) # sudo ./wdt <timeout in seconds>

⇒ System will reboot automatically after timeout



#### A.2 wdt.c

```
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
int main(int argc, char **argv)
{
  int fd, ret;
 int timeout = 0;
  fd = open("/dev/watchdog0", 0 RDWR);
  if (fd<0) {
   fprintf(stderr, "Open watchdog device failed!\n");
    return -1;
  ret = ioctl(fd, WDIOC GETTIMEOUT, &timeout);
  if(ret) {
    fprintf(stderr, "Get watchdog timeout value failed!\n");
    return -1;
  fprintf(stdout, "Watchdog timeout value: %d\n", timeout);
  if(argc > 1){
   timeout = atoi(argv[1]);
  } else {
    timeout = 60;
  }
  ret = ioctl(fd, WDIOC_SETTIMEOUT, &timeout);
  if(ret) {
    fprintf(stderr, "Set watchdog timeout value failed!\n");
    return -1;
  fprintf(stdout, "New watchdog timeout value: %d\n", timeout);
  ret = ioctl(fd, WDIOC_KEEPALIVE, NULL);
  if(ret) {
    fprintf(stderr, "Kick watchdog failed!\n");
    return -1;
```

```
/* close WDT0 device */
close(fd);
if (ret<0) {
   fprintf(stderr, "Failed to close watchdog device.");
   return -1;
}
return 0;</pre>
```

#### A.3 watchdog.h

```
#include <linux/ioctl.h>
#include <linux/types.h>
/*
   Generic watchdog defines. Derived from..
 * Berkshire PC Watchdog Defines
 * by Ken Hollis
 *
#ifndef _LINUX_WATCHDOG_H
#define _LINUX_WATCHDOG_H
#define WATCHDOG IOCTL BASE 'W'
struct watchdog_info {
    __u32 options;
     __u32 firmware_version; /* Firmware version of the card */
     _u8 identity[32]; /* Identity of the board */
};
#define WDIOC GETSUPPORT
                              IOR(WATCHDOG IOCTL BASE, 0, struct
#define WDIOC_GETSTATUS
#define WDIOC_SETOPTIONS __IOR(WATCHDOG_IOCTL_BASE, 4, int)
                             _IOR(WATCHDOG_IOCTL_BASE, 5, int)
#define WDIOC_SETTIMEOUT __IOWR(WATCHDOG_IOCTL_BASE, 5, int)
#define WDIOC_GETTIMEOUT __IOR(WATCHDOG_IOCTL_BASE, 6, int)
#define WDIOC_GETTIMEOUT ___IOR(WATCHDOG_IOCTL_BASE, 6, int)
#define WDIOC KEEPALIVE
#define WDIOC_SETPRETIMEOUT_IOWR(WATCHDOG_IOCTL_BASE, 8, int)
#define WDIOC_GETPRETIMEOUT _IOR(WATCHDOG_IOCTL_BASE, 9, int)
#define WDIOC_GETTIMELEFT _IOR(WATCHDOG_IOCTL_BASE, 10, int)
#define WDIOF UNKNOWN
                           -1 /* Unknown flag error */
#define WDIOS UNKNOWN
                              -1 /* Unknown status error */
#define WDIOF OVERHEAT
                              0x0001 /* Reset due to CPU overheat */
#define WDIOF_FANFAULT
                              0x0002 /* Fan failed */
                              0x0004 /* External relay 1 */
#define WDIOF_EXTERN1
```

Watchdog Timer

AIE110-ONX Series User's Manual

| #define<br>#define<br>#define<br>#define<br>#define<br>#define<br>#define | WDIOF_EXTERN2<br>WDIOF_POWERUNDER<br>WDIOF_CARDRESET<br>WDIOF_POWEROVER<br>WDIOF_SETTIMEOUT<br>WDIOF_MAGICCLOSE<br>WDIOF_PRETIMEOUT<br>WDIOF_KEEPALIVEPING | 0x0008<br>0x0010<br>0x0020<br>0x0040<br>0x0080<br>0x0100<br>0x0200<br>0x8000 | /* * * * *<br>/ * * * * * | External relay 2 */<br>Power bad/power fault */<br>Card previously reset the CPU */<br>Power over voltage */<br>Set timeout (in seconds) */<br>Supports magic close char */<br>Pretimeout (in seconds), get/set *<br>Keep alive ping reply */ | */ |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| #define<br>#define<br>#define<br>#endif                                   | WDIOS_DISABLECARD<br>WDIOS_ENABLECARD<br>WDIOS_TEMPPANIC<br>/* ifndef _LINUX_WAT                                                                           | 0x0001<br>0x0002<br>0x0004<br>0x0004                                         | /*<br>/*<br>*/            | Turn off the watchdog timer */<br>Turn on the watchdog timer */<br>Kernel panic on temperature trip <sup>+</sup>                                                                                                                              | */ |

# APPENDIX B PROGRAMMABLE DIGITAL I/O

#### About Programmable Digital I/O

The AIE110-ONX supports 8 channels programmable digital I/O which allows user to program the DI or DO. For more details, please refer to the below sample code.

# B.1 Default Setting & Command Format

#### THE DEFAULT SETTING:

DIO1 ~ 8 are all INPUT

★ <u>Note</u>: The DIO protocol will reset to the default setting after a cold boot.

#### COMMAND FORMAT:

# i2cset -f -y <i2c\_num> <device\_addr> <reg\_addr> <value>
# i2cget -f -y <i2c\_num> <device\_addr> <reg\_addr>

[For Example]

<i2c\_num>:7

<device\_adrr>: 0x24

<reg\_addr>: 0x00~0x03 (as below Register Table)

<value>:

- Bit0 -> DIO1, Low: 0 High: 1
- Bit1 -> DIO2, Low: 0 High: 1
- Bit7 -> DIO8, Low: 0 High: 1

### B.2 Sample Program

#### 1. DIO Output Sample Code

| # i2cset -f -y 7 0x24 0x01 0xFF | //Set DIO1 ~ 8 as High                       |
|---------------------------------|----------------------------------------------|
| # i2cset -f -y 7 0x24 0x03 0x00 | //Set DIO1 ~ 8 as Output                     |
| # i2cset -f -y 7 0x24 0x01 0xF0 | //Set DIO1 ~ 4 as Low and DIO5~8 as High     |
| # i2cset -f -y 7 0x24 0x01 0x01 | //Set DIO1 as High and DIO2~8 as Low         |
| # i2cset -f -y 7 0x24 0x03 0x0F | //Set DIO1 ~ 4 as Input and DIO5~8 as Output |
|                                 |                                              |

#### 2. DIO Input Sample Code

| # | i2cset | -f | - y | 7 | 0x24 | 0x03 | ØxFF | //Set DIO1 ~ 8 as Input |
|---|--------|----|-----|---|------|------|------|-------------------------|
| # | i2cget | -f | - y | 7 | 0x24 | 0x00 |      | //Read all inputs       |

•••

# B.3 Register Table

Register 0 - Input Port Register Bit Description

| Bit | Symbol | Access    | Value | Description                      |
|-----|--------|-----------|-------|----------------------------------|
| 7   | 17     | read only | Х     | Determined by externally applied |
| 6   | 16     | read only | Х     |                                  |
| 5   | 15     | read only | Х     |                                  |
| 4   | 14     | read only | Х     |                                  |
| 3   | 13     | read only | Х     |                                  |
| 2   | 12     | read only | Х     |                                  |
| 1   | l1     | read only | Х     |                                  |
| 0   | 10     | read only | Х     |                                  |

#### **Register 1 - Output Port Register Bit Description**

This register reflects the outgoing logic levels of the pins defined as outputs by Register 3. Bit values in this register have no effect on pins defined as inputs. Reads from this register return the value that is in the flip-flop controlling the output selection, **not** the actual pin value.

| Bit | Symbol | Access | Value | Description                            |
|-----|--------|--------|-------|----------------------------------------|
| 7   | 07     | R      | 1*    | Reflects outgoing logic levels of pins |
| 6   | O6     | R      | 1*    |                                        |
| 5   | O5     | R      | 1*    |                                        |
| 4   | O4     | R      | 1*    |                                        |
| 3   | O3     | R      | 1*    |                                        |
| 2   | O2     | R      | 1*    |                                        |
| 1   | O1     | R      | 1*    |                                        |
| 0   | O0     | R      | 1*    |                                        |

Legend: \* default value

#### Register 3 - Configuration Register Bit Description

This register configures the directions of the I/O pins. If a bit in this register is set, the corresponding port pin is enabled as an input with high-impedance output driver. If a bit in this register is cleared, the corresponding port pin is enabled as an output. At reset, the I/Os are configured as inputs with a weak pull-up to  $V_{DD}$ .

Legend: \* default value

| Bit | Symbol | Access | Value | Description                                                                                       |
|-----|--------|--------|-------|---------------------------------------------------------------------------------------------------|
| 7   | C7     | R/W    | 1*    | Configures the directions of the I/O pins                                                         |
| 6   | C6     | R/W    | 1*    | 1 = corresponding port pin enabled as an output<br>1 = corresponding port pin configured as input |
| 5   | C5     | R / W  | 1*    | (default value)                                                                                   |
| 4   | C4     | R / W  | 1*    |                                                                                                   |
| 3   | C3     | R/W    | 1*    |                                                                                                   |
| 2   | C2     | R / W  | 1*    |                                                                                                   |
| 1   | C1     | R/W    | 1*    |                                                                                                   |
| 0   | C0     | R/W    | 1*    |                                                                                                   |